关于初中价段的因式分解中的十字相乘法,

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/04 09:12:50
关于初中价段的因式分解中的十字相乘法,

关于初中价段的因式分解中的十字相乘法,
关于初中价段的因式分解中的十字相乘法,

关于初中价段的因式分解中的十字相乘法,
⒈十字相乘法概念
十字相乘法能把某些二次三项式分解因式.这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号.
[编辑本段]
例题
例1 把2x^2;-7x+3分解因式.
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分
别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=3×1=(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1 1

2 3
1×3+2×1
=5
1 3

2 1
1×1+2×3
=7
1 -1

2 -3
1×(-3)+2×(-1)
=-5
1 -3

2 -1
1×(-1)+2×(-3)
=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
解 2x^2;-7x+3=(x-3)(2x-1).
一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1 c1
? ╳
a2 c2
a1c2+a2c1
按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
ax2+bx+c=(a1x+c1)(a2x+c2).
像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.
例2 把6x^2-7x-5分解因式.
分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种
2 1

3 -5
2×(-5)+3×1=-7
是正确的,因此原多项式可以用十字相乘法分解因式.
解 6x^2-7x-5=(2x+1)(3x-5)
指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.
对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是
1 -3

1 5
1×5+1×(-3)=2
所以x^2+2x-15=(x-3)(x+5).
例3 把5x^2+6xy-8y^2分解因式.
分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即
1 2
?╳
5 -4
1×(-4)+5×2=6
解 5x^2+6xy-8y^2=(x+2y)(5x-4y).
指出:原式分解为两个关于x,y的一次式.
例4 把(x-y)(2x-2y-3)-2分解因式.
分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.
问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?
答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.
解 (x-y)(2x-2y-3)-2
=(x-y)[2(x-y)-3]-2
=2(x-y) ^2-3(x-y)-2
=[(x-y)-2][2(x-y)+1]
=(x-y-2)(2x-2y+1).
1 -2

2 1
1×1+2×(-2)=-3
指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.
例5 x^2+2x-15
分析:常数项(-15)7 不成立 继续试
第二次
1 2

2 3
1X3+2X2=7 所以 分解后为:(x+2)(2x+3)
[编辑本段]
⒉十字相乘法(解决两者之间的比例问题)

[编辑本段]
原理
一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B.平均值为C.求取值为A的个体与取值为B的个体的比例.假设A有X,B有(1-X).
AX+B(1-X)=C
X=(C-B)/(A-B)
1-X=(A-C)/(A-B)
因此:X∶(1-X)=(C-B)∶(A-C)
上面的计算过程可以抽象为:
A ………C-B
……C
B……… A-C
这就是所谓的十字相乘法.
十字相乘法使用时要注意几点:
第一点:用来解决两者之间的比例问题.
第二点:得出的比例关系是基数的比例关系.
第三点:总均值放中央,对角线上,大数减小数,结果放在对角线上.
[编辑本段]
例题
某高校2006年度毕业学生7650名,比上年度增长2%,其中本科毕业生比上年度减少2%,而研究生毕业数量比上年度增加10%,那么,这所高校今年毕业的本科生有多少人?
十字相乘法
去年毕业生一共7500人,7650÷(1+2%)=7500人.
本科生:-2%………8%
…………………2%
研究生:10%……… 4%
本科生∶研究生=8%∶4%=2∶1.
7500×2/3=5000
5000×0.98=4900
这所高校今年毕业的本科生有4900人.
[编辑本段]
3.十字相乘法解一元二次方程
(1) (x+3)(x-6)=-8 (2) 2x^2+3x=0
(3) 6x^2+5x-50=0 (4)x^2-2( + )x+4=0
(1)(x+3)(x-6)=-8 化简整理得
x^2-3x-10=0 (方程左边为二次三项式,右边为零)
(x-5)(x+2)=0 (方程左边分解因式)
∴x-5=0或x+2=0 (转化成两个一元一次方程)
∴x1=5,x2=-2是原方程的解.
(2)2x^2+3x=0
x(2x+3)=0 (用提公因式法将方程左边分解因式)
∴x=0或2x+3=0 (转化成两个一元一次方程)
∴x1=0,x2=-3/2是原方程的解.
注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解.
(3)6x^2+5x-50=0
(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)
∴2x-5=0或3x+10=0
∴x1=5/2, x2=-10/3 是原方程的解.
(4)x^2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)
(x-2)(x-2 )=0
∴x1=2 ,x2=2是原方程的解

A/B=C/D
则A*D=B*C

A/B=C/D
A/B*B*D=C/D*B*D
A*D=C*B

比如说x^2+3x+2为例子吧
2可以分解为1和2,刚好中间项3=1+2
即这样的图片:如下:(左上角和左下角的两个一,是x^2等于两个系数为1的x相乘,就写左边;右上角和右下角的一和二,是2的两个因数;十字相乘后(即1乘2加1乘1=中间项3)成立,于是第一排和第二排补上字母,相加写在一起,即(x+2)(x+2)
1 1 1x 1 (x+1)(x+...

全部展开

比如说x^2+3x+2为例子吧
2可以分解为1和2,刚好中间项3=1+2
即这样的图片:如下:(左上角和左下角的两个一,是x^2等于两个系数为1的x相乘,就写左边;右上角和右下角的一和二,是2的两个因数;十字相乘后(即1乘2加1乘1=中间项3)成立,于是第一排和第二排补上字母,相加写在一起,即(x+2)(x+2)
1 1 1x 1 (x+1)(x+2)
╳ ╳
1 2 1x 2

希望你能明白

收起

1.双十字相乘法
分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.
例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为
2x2-(5+7y)x-(22y2-35y+3),
可以看作是关于x的二次三项式.

全部展开

1.双十字相乘法
分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.
例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为
2x2-(5+7y)x-(22y2-35y+3),
可以看作是关于x的二次三项式.
对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为

-22y2+35y-3=(2y-3)(-11y+1).
再利用十字相乘法对关于x的二次三项式分解
所以
原式=〔x+(2y-3)〕〔2x+(-11y+1)〕
=(x+2y-3)(2x-11y+1).
上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:
它表示的是下面三个关系式:
(x+2y)(2x-11y)=2x2-7xy-22y2;
(x-3)(2x+1)=2x2-5x-3;
(2y-3)(-11y+1)=-22y2+35y-3.
这就是所谓的双十字相乘法.
用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:
(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);
(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.
例1 分解因式:
(1)x2-3xy-10y2+x+9y-2;
(2)x2-y2+5x+3y+4;
(3)xy+y2+x-y-2;
(4)6x2-7xy-3y2-xz+7yz-2z2.
解 (1)
原式=(x-5y+2)(x+2y-1).
(2)
原式=(x+y+1)(x-y+4).
(3)原式中缺x2项,可把这一项的系数看成0来分解.
原式=(y+1)(x+y-2).
(4)
原式=(2x-3y+z)(3x+y-2z).
说明 (4)中有三个字母,解法仍与前面的类似.
2.求根法
我们把形如anxn+an-1xn-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如
f(x)=x2-3x+2,g(x)=x5+x2+6,…,
当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)
f(1)=12-3×1+2=0;
f(-2)=(-2)2-3×(-2)+2=12.
若f(a)=0,则称a为多项式f(x)的一个根.
定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.
根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.
参考资料(到你面搜索):http://www.zhongkao.cn/Article_D/2005-09/327497553925424.htm
希望你能明白,学的更好!

收起