什么生物含叶绿体,什么生物含叶绿素?低等植物如衣藻含叶绿体吗?

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/29 06:43:07
什么生物含叶绿体,什么生物含叶绿素?低等植物如衣藻含叶绿体吗?

什么生物含叶绿体,什么生物含叶绿素?低等植物如衣藻含叶绿体吗?
什么生物含叶绿体,什么生物含叶绿素?
低等植物如衣藻含叶绿体吗?

什么生物含叶绿体,什么生物含叶绿素?低等植物如衣藻含叶绿体吗?
在成熟植物的叶肉细胞和幼嫩茎的皮层细胞有叶绿体,如洋葱表皮细胞;可以进行光和自养的生物体内有叶绿素,如蓝藻.注意,蓝藻是低等植物不含叶绿体,只含叶绿素

绿色植物还有莲子心中含有超大型叶绿体

叶绿体和叶绿素是不冲突的两个东西。叶绿素是存在于叶绿体中的光合色素。不是说有的生物含叶绿体,有的生物含叶绿素。它们是包容与被包容的关系,而不是并列的关系。

叶绿体
叶绿体(chloroplast)植物绿色细胞中存在的有色质体。其内含有叶绿素及类胡萝卜素,是进行光合作用的场所。在高等植物中一般呈椭圆形,长轴4~10微米,短轴2~4微米。它被双层膜(称为外被)包围着,内部为层膜系统和基质(或称间质)所组成。在电镜下观察,每一层膜是由双层膜组成扁平的囊,中间是隙,称为类囊体(thylakoid)。类囊体沿长轴平行排列,在一定区域排列紧密,类似一摞...

全部展开

叶绿体
叶绿体(chloroplast)植物绿色细胞中存在的有色质体。其内含有叶绿素及类胡萝卜素,是进行光合作用的场所。在高等植物中一般呈椭圆形,长轴4~10微米,短轴2~4微米。它被双层膜(称为外被)包围着,内部为层膜系统和基质(或称间质)所组成。在电镜下观察,每一层膜是由双层膜组成扁平的囊,中间是隙,称为类囊体(thylakoid)。类囊体沿长轴平行排列,在一定区域排列紧密,类似一摞硬币,称为基粒(grana),其中的类囊体称基粒类囊体,基粒之间的类囊体称为基质类囊体。类囊体膜上含有光合作用光反应所需的各种组分。基质(stroma)呈高度流动性状态,主要成分是可溶性蛋白质,核酮糖-1,5-双磷酸羧化酶加氧酶占其中大部分,光合作用暗反应在其中进行。此外,基质中含有各种颗粒包括DNA纤丝、核糖体、淀粉粒和质体小球等。在电镜下可观察到直径为2.5纳米的DNA纤丝,这就使得叶绿体在遗传上具有一定的自主性。质体小球常呈球状存在,当植物由暗处转到光照条件下,致使层膜系统形成时,它的数量减少,叶片衰老,层膜逐渐解体时,其数量增多。因此,有人认为其功能是脂类的贮存库。
参考资料:http://zjyx.sxtgedu.net/RESOURCE/CZ/CZSW/SWTS/ZXBKQS2/9704_SR.HTM
叶绿素(chlorophyll):光合作用膜中的绿色色素,它是光合作用中捕获光的主要成分。
高等植物叶绿体中的叶绿素(chlorophyll ,chl)主要有叶绿素a 和叶绿素b 两种。它们不溶于水,而溶于有机溶剂,如乙醇、丙酮、乙醚、氯仿等。在颜色上,叶绿素a 呈蓝绿色,而叶绿素b 呈黄绿色。按化学性质来说,叶绿素是叶绿酸的酯,能发生皂化反应。叶绿酸是双羧酸,其中一个羧基被甲醇所酯化,另一个被叶醇所酯化。
叶绿素分子含有一个卟啉环的“头部”和一个叶绿醇的“尾巴”。镁原子居于卟啉环的中央,偏向于带正电荷,与其相联的氮原子则偏向于带负电荷,因而卟啉具有极性,是亲水的,可以与蛋白质结合。叶醇是由四个异戊二烯单位组成的双萜,是一个亲脂的脂肪链,它决定了叶绿素的脂溶性。叶绿素不参与氢的传递或氢的氧化还原,而仅以电子传递(即电子得失引起的氧化还原)及共轭传递(直接能量传递)的方式参与能量的传递。
卟啉环中的镁原子可被H+、Cu2+、Zn2+所置换。用酸处理叶片,H+易进入叶绿体,置换镁原子形成去镁叶绿素,使叶片呈褐色。去镁叶绿素易再与铜离子结合,形成铜代叶绿素,颜色比原来更稳定。人们常根据这一原理用醋酸铜处理来保存绿色植物标本。
共有a、b、c和d4种。凡进行光合作用时释放氧气的植物均含有叶绿素a;叶绿素b存在于高等植物、绿藻和眼虫藻中;叶绿素c存在于硅藻、鞭毛藻和褐藻中,叶绿素d存在于红藻。叶绿素a的分子结构由4个吡咯环通过4个甲烯基(=CH—)连接形成环状结构,称为卟啉(环上有侧链)。卟啉环中央结合着1个镁原子,并有一环戊酮(Ⅴ),在环Ⅳ上的丙酸被叶绿醇(C20H39OH)酯化、皂化后形成钾盐具水溶性。在酸性环境中,卟啉环中的镁可被H取代,称为去镁叶绿素,呈褐色,当用铜或锌取代H,其颜色又变为绿色,此种色素稳定,在光下不退色,也不为酸所破坏,浸制植物标本的保存,就是利用此特性。在光合作用中,绝大部分叶绿素的作用是吸收及传递光能,仅极少数叶绿素a分子起转换光能的作用。它们在活体中大概都是与蛋白质结合在一起,存在于类囊体膜上。
叶绿醇是亲脂的脂肪族链,由于它的存在而决定了叶绿素分子的脂溶性,使之溶于丙酮、酒精、乙醚等有机溶剂中。主要吸收红光及蓝紫光,因而使其显绿色,由于在结构上的差别,叶绿素a呈蓝绿色,b呈黄绿色。在光下易被氧化而退色。叶绿素是双羧酸的酯,与碱发生皂化反应。

收起

植物。

植物与一些低等动物(如眼虫)

蓝藻不含叶绿体,含叶绿素

高等植物含叶绿体,叶绿体中含叶绿素,低等植物虽不含叶绿体,但含有叶绿素,因此能进行光合作用……
对叶绿体的起源有两种认识:
(一)内共生起源学说
许多科学家认为,线粒体和叶绿体分别起源于原始真核细胞内共生的细菌和蓝藻。1970年Margulis在分析了大量资料的基础上提出了一种设想,认为真核细胞的祖先是一种体积巨大的、不需氧的、具有吞噬能力的细胞,能将吞噬所得的糖类进行酵...

全部展开

高等植物含叶绿体,叶绿体中含叶绿素,低等植物虽不含叶绿体,但含有叶绿素,因此能进行光合作用……
对叶绿体的起源有两种认识:
(一)内共生起源学说
许多科学家认为,线粒体和叶绿体分别起源于原始真核细胞内共生的细菌和蓝藻。1970年Margulis在分析了大量资料的基础上提出了一种设想,认为真核细胞的祖先是一种体积巨大的、不需氧的、具有吞噬能力的细胞,能将吞噬所得的糖类进行酵解取得能量。而线粒体的祖先——原线粒体则是一种革兰氏阴性菌,含有三羧酸循环所需的酶系和电子传递链,故它可利用氧气把糖酵解的产物丙酮酸进一步分解,获得比酵解更多的能量。当这种细菌被原始真核细胞吞噬后,即与宿主细胞间形成互利的共生关系,原始真核细胞利用这种细菌(原线粒体)充分供给能量,而原线粒体从宿主细胞获得更多的原料。
(二)非共生起源学说
该学说的支持者提出一种线粒体和叶绿体起源的设想,认为真核细胞的前身是一个进化上比较高等的好氧细菌,它比典型的原核细胞大,这样就要逐渐增加具有呼吸功能的膜表面,开始是通过细菌的细胞膜内陷、扩张和分化,后逐渐形成了线粒体和叶绿体的雏形。根据1974年Uzzell等人的观点,在进化的最初阶段,原核细胞的基因组进行复制并不伴有细胞分裂,然后基因附近的质膜内陷形成双层膜,分别将基因组包围在这些双层膜结构中,从而形成了原始线粒体、叶绿体等细胞器。后来在进化过程中进一步发生了分化,如线粒体和叶绿体的基因组丢失一些基因;细胞核的基因则有了高度发展;质体发展了光合作用;线粒体则演变为专具有呼吸功能的细胞器,于是逐渐形成了现在的真核细胞。
从目前看,对这两个学说尚有争议,各有其实验证据和支持者,因此,关于线粒体和叶绿体的起源,有待今后进一步探讨和研究。

收起